BASIC RADIO THEORY

Gp Capt Sameera Lankathilake

MSc in Mgt, MSc in Def & Strat Stu, MSc in Def Stu (BAN), PGDM (Kelaniya), BSc (Def Stu) Elec & Eltc Eng, AMIE (SL), psc **INTRODUCTION**

WHAT IS COMMUNICATION ?

Communication is a process of transmitting INFORMATION from one location to another

➤ MEDIUM is required for the delivery of the information to be exchanged

 For Example, transmission medium for television or telephone is cable or fiber optics

WHAT IS COMMUNICATION ?

There are basically four elements to any communication system:

BLOCK DIAGRAM OF COMMUNICATION

SYSTEM

PRESENT REQUIREMENTS

- High fidelity communication
- Instantaneous interconnection to one destination or more
- > Availabilities of various utilities on a single network
- Access to data/video at home for affordable cost
- Shopping, banking etc from residence
- Access to libraries at residence
- Video conversation etc

AIM

<u>AIM</u>

To acquaint the Student Officers on the Basic Radio Theory

TYPES OF TRANSMISSION MEDIA

TRANSMISSION MEDIA

- > Open wire pairs
- Paired cables
- > Co-axial cables
- > Wave Guides
- Fiber optic cables
- Radio links
- Satellite links

TRANSMISSION MEDIA

RADIO PRINCIPLES

WHY LEARN RADIO THEORY?

➢ Radio theory is essential knowledge for the understanding of the reasons why particular frequencies are used for communication and navigational aids/system (DME,VOR & etc..).

Appreciate the capabilities and limitations of Radio Equipment

RADIO TRANSMISSION

➢ Radio is wireless transmission through space of electromagnetic waves in the approximate frequency range from 10KHz to 300,000MHz (300GHz).

...cont RADIO PRINCIPLES

APPLICATIONS

cont... 16

Non-Federal Travelers Information Stations (TIS), a mobile service, are authorized in the 535-1705 kHz band. Federal TIS operates at 1610 kHz.

TABLE OF RADIO FREQUENCIES

Description	Abbreviation	Frequency	Wavelength
Very Low Frequency	VLF	3 KHz - 30 KHz	100,000m - 10,000m
Low Frequency	LF	30 KHz - 300 KHz	10,000m - 1,000
Medium Frequency	MF	300 KHz - 3 KHz	1,000m - 100m
High Frequency	HF	3 MHz - 30 MHz	100m - 10m
Very High Frequency	VHF	30 MHz - 300 MHz	10m - 1m
Ultra High Frequency	UHF	300 MHz - 3 GHz	1m - 0.10m
Super High Frequency	SHF	3 GHz - 30 GHz	0.10m - 0.01m
Extremely High frequency	EHF	30 GHz - 300 GHz	0.01m - 0.001m

RADIO TRANSMITTING EQUIPMENT

> Transmitter: a device used to generate and transmit radio signals [Electromagnetic Waves]

Receiver: a device that receives incoming radio signals and converts them to sound or light

Example: Receiver on radio or television converting broadcast signals into sound or images.

...cont RADIO PRINCIPLES

TRANSMITTER AND RECEIVER

ANTENNA

What is Antenna?

- An antenna is an interface between the space and transmitter or receiver
- It is a metallic object, often a wire or collection of wires, used to convert high frequency current into electromagnetic waves and vice versa.
- An antenna can be used either as a transmitting antenna or a receiving antenna
- Used in wireless communication

MAIN CATEGORIES OF TRANSMITTING ANTENNAS

Omni-directional antennas wave is traveling from the rock to the shore equally in all directions

Unidirectional/directional antennas wave is traveling from the rock to the shore in a defined directional

...cont RADIO PRINCIPLES

ANTENNA TYPES

Dipole

 Basic dipole antenna consists of conductors arranged symmetrically

> Monopole

 Consists of a single conductor usually mounted over the ground or an artificial conducting surface

...cont RADIO PRINCIPLES

ANTENNA TYPES

> Array

- Consist of multiple antennas
- Working as a single antenna

Loop antennas

 Consist of a loop (or coil) of wire

ANTENNA TYPES

Wire antenna

Used in long range HF and MF communication

Micro strip antenna

- An antenna fabricated on a printed circuit board
- Internal antenna mostly used microwave frequencies

ANTENNA TYPES

Aperture antenna

Aperture antennas are the main
type of directional antennas used
at microwave frequencies and above

Lens/Horne antenna

 Lens antennas are microwave antennas which direct EM waves to a direction

...cont RADIO PRINCIPLES

ANTENNA TYPES IN SLAF

...cont RADIO PRINCIPLES

ANTENNA TYPES IN SLAF

ANTENNA APPLICATIONS

Point-to-point communications

Broadcasting applications

Radar communications

Satellite communications

BASIC TERMINOLOGIES

BASIC TERMINOLOGIES

- Frequency (f)
- > Amplitude
- Wavelength (λ)

FREQUENCY

- Rate of oscillation or number of oscillations per second
- Measure by 'Hz'
 - 1000 Hz = 1 kHz
 - 1000 kHz = 1 MHz
 - 1000 MHz = 1 GHz

AMPLITUDE

Maximum displacement or distance moved by a point on a wave measured from its equilibrium position

WAVELENGTH

The horizontal distance between any two successive equivalent points

> Higher the frequency, shorter the wave length.

BASIC TERMINOLOGIES

BASIC EQUATION

BASIC EQUATION

- $C = \lambda/T = \lambda \times 1/T$
- f = 1/T
- $C = f\lambda$

$$C = f x \lambda$$

- $\lambda = Wavelength [m]$ f = Frequency [Hz]
- $C = 3x10^8 \text{ m/s}$

EXAMPLE 1

> What is the frequency of an air traffic control operating at a wavelength of 2.5m? [*Speed of light c* = $3x10^8$ m/s]

c = f x λ f = c/ λ f = 3 x 10⁸ m/s / 2.5m f = 120,000,000 Hz f = 120 MHz

EXAMPLE 2

> What is the frequency of Distance Measuring Equipment (DME) operating at a wavelength of 0.3m? [*Speed of light c* = $3x10^8$ m/s]

c = f x λ f = c/ λ f = 3 x10⁸ m/s / 0.3m f = 1 x 10⁹Hz @ 1000 x 10⁶ Hz f = 1 GHz @ 1000 MHz

EXAMPLE 3

> What is the wavelength of ILS Localizer operating at a frequency of 100MHz? [*Speed of light c* = 3×10^8 m/s]

c = f x λ λ = c/ f λ = 3 x 10⁸ m/s / 100 x 10⁶ Hz λ = 3 m

MODULATION

MODULATION

➢ Modulation is the process of changing the characteristics (amplitude, frequency or phase) of the carrier signal, in accordance with the amplitude of the message signal.

...cont MODULATION

MODULATION

IMPORTANCE OF MODULATION

- > Avoids interferences from other signals
- Increase the range of communication
- To enable wireless communication
- Reduces the effect of noise
- Reduces transmitting and receiving antenna size

...cont MODULATION

AMPLITUDE MODULATION

...cont MODULATION

FREQUENCY MODULATION

There are three principle paths which radio waves may follow over the earth between the transmitter and the receiver

Follows the contour of the Earth

Line of Sight: Clear path between transmitting and receiving antennas

RECAP

- > Types of Transmission Media
- Radio Principles
- Basic Terminologies
- Basic Equation
- Modulation
- Radio Wave Propagation

